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LETTER TO THE EDITOR 

Random walks on site disordered lattices 

Jonathan Machta 
Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003, 
USA 

Received 4 April 1985 

Abstract. Random walk models with disordered waiting times (site disorder) are analysed 
using a real space renormalisation group method. Anomalous diffusion is found in all 
dimensions whenever the first moment of the distribution of waiting times diverges. Above 
two dimensions the fixed points are described by continuous time random walks with 
non-analytic waiting time functions. Below two dimensions the fixed points are themselves 
disordered random walks where the disorder is characterised by a stable probability 
distribution. A fractal dimension is defined for site disordered lattices and, below two 
dimensions, a hyperscaling law is found which relates the fractal dimension, the Euclidean 
dimension, and the exponent describing the displacement of the walker. 

Diffusion in disordered media has been the subject of considerable recent interest. 
The anomalous transport properties which result from the presence of disorder have 
been studied with a variety of random walk models including walks on lattices with 
random biases (Sinai 1982, Luck 1983, Fisher 1984), walks on one-dimensional lattices 
with random bonds or random sites (Alexander et a1 1981, Stephen and Kariotis 1982, 
Nieuwenhuizen and Ernst 1985) and walks on percolation clusters (de Gennes 1976). 
Walks on ordered lattices which display anomalous transport have also been studied. 
These include walks on self similar or fractal lattices (Gefen er al 19Sl), continuous 
time random walks (Schlesinger 1974) and walks with random step lengths (Gillis and 
Weiss 1970). For ordered models there are exact results in all dimensions but for 
disordered models exact results are difficult to obtain except in one dimension. 

This letter presents an investigation of random walks on lattices with site disorder. 
Site disorder is defined to mean that the expected waiting time at each lattice site is 
a quenched random variable. The effect of site disorder is studied using a real space 
renormalisation group procedure closely related to the method introduced by Machta 
(1981, 1983). We find that anomalous diffusion ( r -  t ’ ;  Y<;) occurs whenever the 
distribution of expected waiting times has no first moment. The exponents which we 
obtain agree with the heuristic treatment of the problem given by Alexander (1981) 
who showed that d = 2 is the upper critical dimension for the problem. Above two 
dimensions the fixed point of the renormalisation group flow corresponds to a con- 
tinuous time random walk with a non-analytic waiting time function of the kind studied 
by Schlesinger (1974). The continuous time random walk approximation discussed by 
Scher and Lax (1973), Scher and Montroll (1975) and Klafter and Silbey (1980) 
corresponds to the mean field theory for the problem. Below two dimensions, for 
sufficiently strong disorder, the fixed points are themselves disordered random walks 
where the disorder is described by a stable probability distribution. We obtain a 
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hyperscaling relation, valid for d < 2, which agrees with the exact one-dimensional 
results of Alexander et al (1981) and Stephen and Kariotis (1982). 

The concept of fractal dimension (see Mandelbrot 1982) plays a key role in the 
description of scale invariant structures such as percolation clusters or Sierpinski 
gaskets. We show that site disordered lattices enjoy a statistical scale invariance which 
can be quantified by a fractal dimension, d,. The fractal dimension enters the hyperscal- 
ing relation obtained from the renormalisation group analysis and relates it to Y and d. 

We consider random walks on a d-dimensional hypercubic lattice with lattice 
constant a. At each lattice site j there is a quenched random variable T~ which is the 
expected waiting time for jumping from the site. The walker jumps with equal 
probability to any of the ZD nearest neighbours. The T~ are independent, identically 
distributed ( I ID)  positive random variables with distribution F (  7). 

The random walk may be described either by a master equation or as a continuous 
time random walk (CTRW). The master equation takes the form 

where the sum extends over nearest neighbours of i and pi( t )  is the probability at time 
t that the walker is at site i. Note that, in equilibrium, pi is proportional to T~. In the 
CTRW description a waiting time function, & ( t )  is assigned to each site such that 
& ( t )  d t  is the probability that the walker leaves site i in the time interval t to t + d t  
after arrival. As is well known (see, e.g., Klafter and Silbey 1980) a CTRW is equivalent 
to a generalised master equation and the special case of the Markovian master equation 
(1) is described by exponential waiting time functions, 

& ( t )  = ( I / T ~ )  (2) 

We consider three classes of distributions for T ~ .  Class a or weak disorder contains 
all distributions with finite means, p, 

= x dF(x) .  (3) 

Haus et al (1982) have obtained an exact solution for the weak disorder problem. 
Classes b and c, together called strong disorder, contain all distributions without first 
moments but with regularly varying tails 

(4) 

where a = 1 for class b and 0 < a < 1 for class c. The notation f(x)  - xu  means 
lim,+.mf(Ax)/f(x) = A "  for all A > 0. This classification scheme agrees (except for a 
redefinition of a) with the one introduced by Alexander et a1 (1981) and also incorpor- 
ates distributions whose tails are not pure power laws but have, for example, logarithmic 
corrections. As a becomes smaller, the system becomes more strongly disordered since 
the likelihood of anomalously long waiting times increases. 

A variety of physical systems are isomorphic to the random walk described by the 
master equation (1). Among these are harmonic lattices with random masses, tight- 
binding models with diagonal disorder, and electrical networks of resistors and random 
capacitors. In the electrical network interpretation each lattice point has a capacitor 
connected to ground, nearest-neighbour capacitors are connected by unit resistors and 
p i  is the charge on the capacitor at site i. 

(1 - F(x))  - x- 
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The primary objective of this work is to obtain the exponents v and d,  describing 
the asymptotic behaviour of the root-mean-squared displacement of the walk, R( t )  
and the probability of being at the origin Po( t ) .  These quantities are defined by 

 and 

Po( t )  = ( P o (  1 ) )  - t-d"2 

where 'j is the position of site j ,  and the brackets indicate an average over the 
configurations of the disordered lattice. The initial condition in both cases is p j ( 0 )  = Sjo. 
The exponent d,  is often referred to as the spectral dimension because of its relation 
to the density of states of the equivalent harmonic lattice. 

In order to determine the asymptotic properties of the walk we use a real space 
RG method similar to the one used by Machta (1981,1983). The first step in the RG 
transformation is to replace (hypercubic) blocks of 2* sites by a single site on a 
hypercubic lattice with lattice constant 2a. The random walk on the new lattice is 
described by a set of block waiting time functions Gb(t) chosen to preserve the long 
time and large distance properties of the walk. The block waiting time functions are 
obtained from the waiting time functions in the block by averaging over paths for 
leaving the block. This is most easily accomplished using Laplace transformed waiting 
time functions, 

+ ( z )  = lom dt  e-,'G(t). (7) 

A path r = ( j l ,  j , ,  . . . , j n ( r ) )  is a sequence of n(T) sites all within a block. The walker 
arrives at site j , ,  visits the sequence of sites, r and then leaves the block from site j"(i-1. 
The waiting time function, &( t ) ,  for making the sequence of jumps r is the convolution 
of waiting time functions along the path so that its Laplace transform is given by 

n ( i - )  

+ r ( z ) =  n +j , , , (Z) .  (8) 

+P<z) = C w ( W i - ( z )  (9) 

m = l  

We define the block waiting time function, @ ( z ) ,  as 

i- 

where the sum is over all paths for leaving the block i and w ( T )  is the weight assigned 
to the path. For the analysis which follows it is unnecessary to define the weight 
function explicitly. We require only that it have the following properties. 

(1) Normalisation 

1 w ( r )  = 1. 
r 

(2) The mean number of sites visisted per visit to a block is 4, 

(3) Each site in the block is visited with equal weight. 
For the case of weakly disordered (and ordinary) random walks these properties are 
sufficient to show that the diffusion coefficient, D = a2/2dp (Haus et al 1982) is an 
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invariant of the transformation. Site disorder does not affect the weighting of paths 
contributing to the Green function. Thus we hypothesise that the asymptotic properties 
of strongly disordered walks will also be invariants of the transformation. 

It is the basic assumption of this work that a random walk given by (8) and (9) 
with a weight function satisfying properties (1)-(3) has the same long time and large 
distance properties as the original random walk. 

The next step in the RG procedure is to rescale space and time so that the RG flow 
leads to a non-trivial fixed point. By non-trivial we mean that 0 < R (  t )  < 00 for 0 < t < W. 

In order that the lattice constant be invariant under the RG transformation, the space 
rescaling factor must be chosen to be two. The time rescaling factor, A, enters the 
definition of the renormalised waiting time functions, $:( t )  via 

$:( t )  = $p( CA). (12) 

The choice of time rescaling factor at each RG transformation depends on the set of 
waiting time functions and is dictated by the requirement that the recursion relations 
defined by equations (8)-(12) flow to a non-trivial fixed point. 

The fixed points of the RG flow are more easily understood in the small z limit by 
considering recursion relations on the set of functions T , ( z )  defined by 

Note that T,(O) is the expected waiting time at site j. The recursion relations for the 
functions T,(z) are determined from (8), (9), (12) and (13) and take the form 

For small z, 4(z)  can be replaced by 1 and, using properties (1) through (3) of the 
weight function, we find that the recursion relations take the simple form 

T'(z) = (4/A)2-d T,(z/A) (15) 
j s  C 

where C is the set of 2d sites in the block and, to simplify the notation, we have 
omitted the lattice index of the block. After 1 iterations of the recursion relations, 
T'"(z) is a weighted sum of 2d' random functions (see (2)), 

where C (  I )  is the set of 2d' sites in the original lattice which are in the block and Q( I )  
is the product of the time rescaling factors from the first 1 transformations, 

Q ( I ) =  fi A'"''. 
m = l  

Our task is to choose a sequence of time rescaling factors so that, as 1 + CO, the set 
of functions {Tj ')} goes to a non-trivial fixed point. To understand the behaviour of 
the sum (16) for large 1 we make use of theorem characterising the sum and maximum 
element of a set of I I D  random variables (see, e.g., Feller 1971). 
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Suppose { X I ,  X z ,  . . . , X N }  is a set of N I I D  positve random variables, X ( N )  is the 
largest element of the set and Y ( N )  is a sum over the set, 

N 

Y ( N ) =  xm. 
m = l  

For a class a distributions x( N ) /  Y (  N )  + 0 with probability 1 so that x( N )  makes 
an infinitesimal contribution to the sum as N + 03. On the other hand, for classes b 
and c, the distribution for Y (  N ) / % (  N )  is non-degenerate so that the largest summand 
is (almost surely) a finite fraction of the whole. 

The sum itself diverges but with proper choice of norming constants, A ( N ) ,  the 
distribution for the random variable Y (  N ) / A ( N )  approaches a limit distribution, F*. 
We shall see that these stable distributions play the role of non-trivial fixed points for 
d < 2. The proper choice of norming constants are given as follows: 
Class a. If p is finite the law of large numbers shows that, with the choice 

A ( N ) = N  (19) 

the limit distribution F* is concentrated at p. 
Class b. If  F is of the form given in (4) with a = 1 a modified form of the law of large 
numbers asserts that there is a choice 

A ( N ) - N  (20) 

such that the limit distribution is concentrated at unity. 
Class c. If F is of the form given in (4) with O <  a < 1 then there is a sequence of 
norming constants 

A( N )  - NI'" (21) 

such that the limit distribution is a stable distribution with characteristic exponent a. 
For classes b and c more explicit prescriptions for A( N )  can be found in Feller (1971) 
from which it can be seen that the asymptotic behaviour of A ( N )  is typically not that 
of a pure power law in N. Roughly speaking then, for classes b and c both g ( N )  
and Y ( N )  typically grow like NI'". 

We first consider weak disorder (class a). The law of large numbers ensures that 
T"'(0) + T*(O) = p so long as A = 4. Let ? ( I )  be the maximum of the set of expected 
waiting times in the block C (  I ) .  Since y( I)/4'+ 0, the choice A = 4 eliminates the z 
dependence from the sum (16) and the fixed point waiting time function, I,!I*(z), derived 
from the full recursion relations (8)-(12) is expected to be well behaved. The fixed 
point is thus an ordered random walk where the mean waiting time at each site is p. 

For classes b and c the behaviour of the sum (16) is more subtle. First suppose 
that 7( I ) /  Q( I )  + 03. Then for non-zero z and large I the sum can be replaced by an 
integral. Taking the limit I + m  and using (4) to scale out the dependence of the 
integral on z and we obtain the fixed point function T * ( z ) ,  

T*(z )  = zm-'( lim '-CC 4' I df(yQ(I))*). 

Thus T'"(z )  approaches a non-trivial function if and only if the limit in the brackets 
in (22) is a positive constant. The required asymptotic behaviour for product of the 
time rescaling factors is then Q( I)  - 4"=. Since y( I)  grows like 2d"" the premise that 
y( I ) /  Q( I) + 00 holds for d > 2 and fails for d < 2. Thus, for d > 2, the fixed point is 
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a CTRW with a single waiting time function, $ * ( z )  at each lattice site. For class c this 
waiting time function is non-analytic at z = 0 and behaves like 

( 1  - I , ! I * (z) ) -z" .  (23) 

This asymptotic behaviour is precisely the one predicted by the CTRW approximation 
scheme (see, e.g., Klafter and Silbey 1980) and leads to anomalous diffusion with 
v = a/2 .  

Next suppose that ? ( I ) /  Q( I )  + 0, then (3.10) reduces to a sum of I I D  variables and 
T"' will be a random variable described by a non-trivial limit distribution if and only 
if Q(I )  is chosen so that (20) or (21) is satisfied. Comparing (16), (18) ,  (20) and 
(21) we find that the required asymptotic behaviour for the time rescaling factors is 
Q ( I )  - 22+d/u-d . The ratio ?( I ) /Q( I )  then grows like 2(d-2)/a so that the premise is 
satisfied for d < 2 and fails for d > 2. For class b the fixed point is an ordered CTRW 

with a finite mean waiting time whereas for class c the fixed point is a disordered 
CTRW where the waiting time at each site is chosen from a stable distribution with 
characteristic exponent a. 

The main result of this section is that, to obtain a non-trivial fixed point, the 
asymptotic behaviour of the time rescaling factors must be 

classes a and b 
d > 2, class c 

[ l l + d / u - d  d < 2, class c. 
Q ( I ) -  4'/" 

The exponent v can be ascertained from the asymptotic behaviour of the time 
rescaling factors as follows. According to our basic assumption we may calculate the 
asymptotic properties of the walk using either the original waiting time functions or 
the renormalised waiting time functions. Thus, taking into account the rescaling of 
space and time, the RMS displacement after I iterations of the RG transformation, 
R'"( t ) ,  is related to R (  t )  via the asymptotic equality 

R( t )  = 2'R"'( t /  Q( I ) ) .  (25) 

The notation f (x)  = g(x)  means lim,-mf(x)/g(x) = 1 .  We now fix the argument of 
R"' in (5 .1 )  by choosing I so that t /  Q( I )  = to where to is some arbitrary large constant. 
As t increases so does I so that for large t we are close to the fixed point and can 
replace R"'( to) by its value at the fixed point, R*( to) .  The large I behaviour of Q( I)  
given in (24) determines v through the asymptotic relation Q( I) = ( t /  to)  - 2'/" and we 
obtain, 

( t  classes a and b 
d > 2, class c 
d < 2, class c. = \F / :d /a - d]- '  

The asymptotic behaviour of the probability of being at the origin can be obtained 
using similar arguments. The renormalised probability of being at the origin is the 
sum of the probabilities of being at the 2d sites in the block containing the origin. Thus 

where the sum is over the sites making up the block at the origin. Since (pi( t ) )  = ( po( t ) )  
we have 



Letter to the Editor L537 

comparing (28) and (25) we see that 

d, = 2dv. (29) 

The present calculation has determined only the leading exponents and does not 
distinguish between pure power law behaviour or, for example, a power law times a 
logarithm. A more detailed study of the fixed points reveals that slowly varying 
multiplicative corrections to the leading power law are generic. Indeed, pure power 
law behaviour occurs only if the disorder is either of class a or of class c and the 
probability distribution itself has a pure power law tail. This contrasts to most other 
applications of the RG method where logarithmic corrections are found only at the 
critical dimensions. We have not explicitly treated the upper critical dimension, d, = 2. 
We expect, as in other critical phenomena, that the exponents will be continuous at 
d, and that additional slowly varying corrections will appear. 

For self similar lattices such as percolation clusters or Sierpinski gaskets the fractal 
dimension Ldf is defined as the exponent relating the number of lattice sites in a region 
to its linear dimension. For these and other recently studied fractal structures, each 
lattice site has the same capacity. However, for site disordered lattices, the sites are 
not equivalent; sites with large values of 7 accommodate more walkers than those with 
small values of 7. It seems reasonable then to define the fractal dimension for site 
disordered lattices as the exponent relating the sum of the 7's within a region to the 
linear dimension of the region. This definition implies that the equilibrium number 
of walkers within a region of radius L will be proportional to Ldf. Alternatively, in 
the electrical network picture, the total capacitance of a region is proportional to Ldf 
while in the harmonic lattice picture the total mass within a region is proportional to 
Ldf. 

Care is required in implementing this definition for class b and c distributions 
where p fails to exist. We define the fractal dimension of a site disorded lattice via 

where B ( L )  is the set of lattice points within a ball of radius L and where E = 1 for 
class a and 0 < E < a for classes b and c. Although p may diverge, the average in (30) 
is guaranteed to exist. It follows from (19)-(21) that for weak disorder, df= d while 
for strong disorder, 

d f =  d / a .  (31) 

In contrast to fractal structures studied hitherto, the fractal dimension of site 
disordered lattices exceeds the Euclidean dimension and can be continuously varied 
between d and 03 as a is varied from 1 to 0. One finds the following inequality amongst 
the dimensions calculated here 

(32) 
whereas for ordinary lattices all three dimensions coincide. 

Combining (26) and (31) yields a hyperscaling relation, valid for d < d,, between 
the fractal dimension of site disordered lattices and the asymptotics of random walks 
on these lattices, 

0 s  d , S  d s df 

1/ v = 2 +  d f - d .  (33) 
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The picture which emerges from the RG analysis is analogous to the situation for 
equilibrium critical phenomena when R is identified with the correlation length and 
l / r  with the reduced temperature. Above the upper critical dimension a mean field 
theory holds and the correlation length exponent is independent of dimension. The 
mean field theory is the CTRW approximation for disordered hopping models developed 
by Scher and Lax (1973), Scher and Montroll (1975) and Klafter and Silbey (1980). 
For d < d,, the fixed points are described by stable probability distributions and the 
exponents depend on the fractal dimension and the Euclidean dimension of the lattice. 
The technique used here reveals the close connection, first discussed by Jona-Lasinio 
(1979, between the theory of stable probability distributions and the renormalisation 
group methodology. 

I would like to thank R A Guyer and H Gould for useful discussions. I am indebted 
to D Fisher and S Alexander for pointing out an error in an early version of the paper. 
This work was supported in part by the National Science Foundation (DMR-7909592 
and DMR-8317442). 
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